Last updated: 2025-08-12

Checks: 7 0

Knit directory: DXR_continue/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20250701) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 0f14098. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/DER_data/

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/peak_cutoff.Rmd) and HTML (docs/peak_cutoff.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 7216f03 infurnoheat 2025-08-01 Build site.
Rmd bb1f3a1 infurnoheat 2025-08-01 wflow_publish("analysis/peak_cutoff.Rmd")
html cd6a358 infurnoheat 2025-08-01 Build site.
html 1281eed infurnoheat 2025-07-25 Build site.
Rmd fcda182 infurnoheat 2025-07-25 wflow_publish("analysis/peak_cutoff.Rmd")
html 3d6bcff infurnoheat 2025-07-22 Build site.
Rmd 95b9db5 infurnoheat 2025-07-22 wflow_publish("analysis/peak_cutoff.Rmd")

Peak Cutoff

Loading Packages

library(tidyverse)
library(readr)
library(edgeR)
library(ComplexHeatmap)
library(data.table)
library(dplyr)
library(stringr)
library(ggplot2)
library(viridis)
library(DT)
library(kableExtra)
library(genomation)
library(GenomicRanges)
library(chromVAR) ## For FRiP analysis and differential analysis
library(DESeq2) ## For differential analysis section
library(ggpubr) ## For customizing figures
library(corrplot) ## For correlation plot
library(ggpmisc)
library(gcplyr)
library(Rsubread)

Data Initialization

sampleinfo <- read_delim("data/sample_info.tsv", delim = "\t")

Functions

drug_pal <- c("#8B006D","#DF707E","#F1B72B", "#3386DD","#707031","#41B333")
pca_plot <-
  function(df,
           col_var = NULL,
           shape_var = NULL,
           title = "") {
    ggplot(df) + geom_point(aes_string(
      x = "PC1",
      y = "PC2",
      color = col_var,
      shape = shape_var
    ),
    size = 5) +
      labs(title = title, x = "PC 1", y = "PC 2") +
      scale_color_manual(values = c(
        "#8B006D",
        "#DF707E",
        "#F1B72B",
        "#3386DD",
        "#707031",
        "#41B333"
      ))
  }
pca_var_plot <- function(pca) {
  # x: class == prcomp
  pca.var <- pca$sdev ^ 2
  pca.prop <- pca.var / sum(pca.var)
  var.plot <-
    qplot(PC, prop, data = data.frame(PC = 1:length(pca.prop),
                                      prop = pca.prop)) +
    labs(title = 'Variance contributed by each PC',
         x = 'PC', y = 'Proportion of variance')
  plot(var.plot)
}

calc_pca <- function(x) {
  # Performs principal components analysis with prcomp
  # x: a sample-by-gene numeric matrix
  prcomp(x, scale. = TRUE, retx = TRUE)
}

get_regr_pval <- function(mod) {
  # Returns the p-value for the Fstatistic of a linear model
  # mod: class lm
  stopifnot(class(mod) == "lm")
  fstat <- summary(mod)$fstatistic
  pval <- 1 - pf(fstat[1], fstat[2], fstat[3])
  return(pval)
}

plot_versus_pc <- function(df, pc_num, fac) {
  # df: data.frame
  # pc_num: numeric, specific PC for plotting
  # fac: column name of df for plotting against PC
  pc_char <- paste0("PC", pc_num)
  # Calculate F-statistic p-value for linear model
  pval <- get_regr_pval(lm(df[, pc_char] ~ df[, fac]))
  if (is.numeric(df[, f])) {
    ggplot(df, aes_string(x = f, y = pc_char)) + geom_point() +
      geom_smooth(method = "lm") + labs(title = sprintf("p-val: %.2f", pval))
  } else {
    ggplot(df, aes_string(x = f, y = pc_char)) + geom_boxplot() +
      labs(title = sprintf("p-val: %.2f", pval))
  }
}
x_axis_labels = function(labels, every_nth = 1, ...) {
  axis(side = 1,
       at = seq_along(labels),
       labels = F)
  text(
    x = (seq_along(labels))[seq_len(every_nth) == 1],
    y = par("usr")[3] - 0.075 * (par("usr")[4] - par("usr")[3]),
    labels = labels[seq_len(every_nth) == 1],
    xpd = TRUE,
    ...
  )
}

Peak Cut Off Analysis via Elbow Method

Cut Off Analysis for H3K27ac

H3K27ac <- sampleinfo %>%
  dplyr::filter(Histone_Mark=="H3K27ac")
cutoff <- data.frame(matrix(nrow = 0, ncol = 6))
colnames(cutoff) = c("Sample", "pscore", "qscore", "npeaks", "lpeaks", "avelpeak")
for (sample in H3K27ac$`Library ID`) {
  filename <- paste("data/peaks/H3K27ac/", sample, "_macs3_noModel_cutoff_analysis.txt", sep = "")
  temp <- read_delim(filename, delim = "\t")
  temp$Sample <- sample
  cutoff <- rbind(cutoff, temp)
}
H3K27ac <- left_join(H3K27ac, cutoff, by =c("Library ID"="Sample"))
H3K27ac %>%  
  ggplot(., aes(x=H3K27ac$qscore, y=H3K27ac$npeaks, color = 'Library ID'))+
  geom_line(size=1)+
  scale_x_continuous(breaks = seq(0, max(H3K27ac$qscore), by = 1))+
  facet_wrap(~`Library ID`, scales = "free", ncol = 5, switch = "y")+
  labs(title = "",
       x = "Q Score",
       y = "Peak Counts",
       color= "Sample")+
  theme_minimal()

Version Author Date
3d6bcff infurnoheat 2025-07-22
H3K27ac %>%  
  ggplot(., aes(x=H3K27ac$qscore, y=H3K27ac$lpeaks, color = 'Library ID'))+
  geom_line(size=1)+
  scale_x_continuous(breaks = seq(0, max(H3K27ac$qscore), by = 1))+
  facet_wrap(~`Library ID`, scales = "free", ncol = 5, switch = "y")+
  labs(title = "",
       x = "Q Score",
       y = "Total Peak Lengths",
       color= "Sample")+
  theme_minimal()

Version Author Date
3d6bcff infurnoheat 2025-07-22
H3K27ac %>%  
  ggplot(., aes(x=H3K27ac$qscore, y=H3K27ac$avelpeak, color = 'Library ID'))+
  geom_line(size=1)+
  scale_x_continuous(breaks = seq(0, max(H3K27ac$qscore), by = 1))+
  facet_wrap(~`Library ID`, scales = "free", ncol = 5, switch = "y")+
  labs(title = "",
       x = "Q Score",
       y = "Average Peak Lengths",
       color= "Sample")+
  theme_minimal()

Version Author Date
3d6bcff infurnoheat 2025-07-22

Cut Off Analysis for H3K27me3

H3K27me3 <- sampleinfo %>%
  dplyr::filter(Histone_Mark=="H3K27me3")
cutoff <- data.frame(matrix(nrow = 0, ncol = 6))
colnames(cutoff) = c("Sample", "pscore", "qscore", "npeaks", "lpeaks", "avelpeak")
for (sample in H3K27me3$`Library ID`) {
  filename <- paste("data/peaks/H3K27me3/", sample, "_macs3_cutoff_analysis.txt", sep = "")
  temp <- read_delim(filename, delim = "\t")
  temp$Sample <- sample
  cutoff <- rbind(cutoff, temp)
}
H3K27me3 <- left_join(H3K27me3, cutoff, by =c("Library ID"="Sample"))

H3K27me3 <- H3K27me3[(H3K27me3$pscore >= 0.6),]

H3K27me3 %>%  
  ggplot(., aes(x=H3K27me3$qscore, y=H3K27me3$npeaks, color = 'Library ID'))+
  geom_line(size=1)+
  # geom_point(size=2,alpha =0.7)+
  scale_x_continuous(breaks = seq(0, max(H3K27me3$qscore), by = 1))+
  facet_wrap(~`Library ID`, scales = "free", ncol = 5, switch = "y")+
  labs(title = "",
       x = "Q Score",
       y = "Peak Counts",
       color= "Sample")+
  theme_minimal()

Version Author Date
3d6bcff infurnoheat 2025-07-22
H3K27me3 %>%  
  ggplot(., aes(x=H3K27me3$qscore, y=H3K27me3$lpeaks, color = 'Library ID'))+
  geom_line(size=1)+
  scale_x_continuous(breaks = seq(0, max(H3K27me3$qscore), by = 1))+
  facet_wrap(~`Library ID`, scales = "free", ncol = 5, switch = "y")+
  labs(title = "",
       x = "Q Score",
       y = "Total Peak Lengths",
       color= "Sample")+
  theme_minimal()

Version Author Date
3d6bcff infurnoheat 2025-07-22
H3K27me3 %>%  
  ggplot(., aes(x=H3K27me3$qscore, y=H3K27me3$avelpeak, color = 'Library ID'))+
  geom_line(size=1)+
  scale_x_continuous(breaks = seq(0, max(H3K27me3$qscore), by = 1))+
  facet_wrap(~`Library ID`, scales = "free", ncol = 5, switch = "y")+
  labs(title = "",
       x = "Q Score",
       y = "Average Peak Lengths",
       color= "Sample")+
  theme_minimal()

Version Author Date
3d6bcff infurnoheat 2025-07-22

Cut Off Analysis for H3K36me3

H3K36me3 <- sampleinfo %>%
  dplyr::filter(Histone_Mark=="H3K36me3")
cutoff <- data.frame(matrix(nrow = 0, ncol = 6))
colnames(cutoff) = c("Sample", "pscore", "qscore", "npeaks", "lpeaks", "avelpeak")
for (sample in H3K36me3$`Library ID`) {
  filename = paste("data/peaks/H3K36me3/", sample, "_macs3_cutoff_analysis.txt", sep = "")
  temp <- read_delim(filename, delim = "\t")
  temp$Sample <- sample
  cutoff <- rbind(cutoff, temp)
}
H3K36me3 <- left_join(H3K36me3, cutoff, by =c("Library ID"="Sample"))

H3K36me3 <- H3K36me3[(H3K36me3$pscore >= 0.6),]

H3K36me3 %>%  
  ggplot(., aes(x=H3K36me3$qscore, y=H3K36me3$npeaks, color = 'Library ID'))+
  geom_line(size=1)+
  # geom_point(size=2,alpha =0.7)+
  scale_x_continuous(breaks = seq(0, max(H3K36me3$qscore), by = 1))+
  facet_wrap(~`Library ID`, scales = "free", ncol = 5, switch = "y")+
  labs(title = "",
       x = "Q Score",
       y = "Peak Counts",
       color= "Sample")+
  theme_minimal()

Version Author Date
3d6bcff infurnoheat 2025-07-22
H3K36me3 %>%  
  ggplot(., aes(x=H3K36me3$qscore, y=H3K36me3$lpeaks, color = 'Library ID'))+
  geom_line(size=1)+
  scale_x_continuous(breaks = seq(0, max(H3K36me3$qscore), by = 1))+
  facet_wrap(~`Library ID`, scales = "free", ncol = 5, switch = "y")+
  labs(title = "",
       x = "Q Score",
       y = "Total Peak Lengths",
       color= "Sample")+
  theme_minimal()

Version Author Date
3d6bcff infurnoheat 2025-07-22
H3K36me3 %>%  
  ggplot(., aes(x=H3K36me3$qscore, y=H3K36me3$avelpeak, color = 'Library ID'))+
  geom_line(size=1)+
  scale_x_continuous(breaks = seq(0, max(H3K36me3$qscore), by =1))+
  facet_wrap(~`Library ID`, scales = "free", ncol = 5, switch = "y")+
  labs(title = "",
       x = "Q Score",
       y = "Average Peak Lengths",
       color= "Sample")+
  theme_minimal()

Version Author Date
3d6bcff infurnoheat 2025-07-22

Cut Off Analysis for H3K9me3

H3K9me3 <- sampleinfo %>%
  dplyr::filter(Histone_Mark=="H3K9me3")
cutoff <- data.frame(matrix(nrow = 0, ncol = 6))
colnames(cutoff) = c("Sample", "pscore", "qscore", "npeaks", "lpeaks", "avelpeak")
for (sample in H3K9me3$`Library ID`) {
  filename = paste("data/peaks/H3K9me3/", sample, "_macs3_noModel_cutoff_analysis.txt", sep = "")
  temp <- read_delim(filename, delim = "\t")
  temp$Sample <- sample
  cutoff <- rbind(cutoff, temp)
}
H3K9me3 <- left_join(H3K9me3, cutoff, by =c("Library ID"="Sample"))

H3K9me3 %>%  
  ggplot(., aes(x=H3K9me3$qscore, y=H3K9me3$npeaks, color = 'Library ID'))+
  geom_line(size=1)+
  # geom_point(size=2,alpha =0.7)+
  scale_x_continuous(breaks = seq(0, max(H3K9me3$qscore), by = 1))+
  facet_wrap(~`Library ID`, scales = "free", ncol = 5, switch = "y")+
  labs(title = "",
       x = "Q Score",
       y = "Peak Counts",
       color= "Sample")+
  theme_minimal()

Version Author Date
3d6bcff infurnoheat 2025-07-22
H3K9me3 %>%  
  ggplot(., aes(x=H3K9me3$qscore, y=H3K9me3$lpeaks, color = 'Library ID'))+
  geom_line(size=1)+
  scale_x_continuous(breaks = seq(0, max(H3K9me3$qscore), by = 1))+
  facet_wrap(~`Library ID`, scales = "free", ncol = 5, switch = "y")+
  labs(title = "",
       x = "Q Score",
       y = "Total Peak Lengths",
       color= "Sample")+
  theme_minimal()

Version Author Date
3d6bcff infurnoheat 2025-07-22
H3K9me3 %>%  
  ggplot(., aes(x=H3K9me3$qscore, y=H3K9me3$avelpeak, color = 'Library ID'))+
  geom_line(size=1)+
  scale_x_continuous(breaks = seq(0, max(H3K9me3$qscore), by = 1))+
  facet_wrap(~`Library ID`, scales = "free", ncol = 5, switch = "y")+
  labs(title = "",
       x = "Q Score",
       y = "Average Peak Lengths",
       color= "Sample")+
  theme_minimal()

Version Author Date
3d6bcff infurnoheat 2025-07-22

Cut Off For Broad Peaks as Narrow

H3K27me3 <- sampleinfo %>%
  dplyr::filter(Histone_Mark=="H3K27me3") %>%
  dplyr::filter(!Treatment=="5FU")
cutoff <- data.frame(matrix(nrow = 0, ncol = 6))
colnames(cutoff) = c("Sample", "pscore", "qscore", "npeaks", "lpeaks", "avelpeak")
for (sample in H3K27me3$`Library ID`) {
  filename <- paste("data/peaks/H3K27me3/", sample, "_narrow_cutoff_analysis.txt", sep = "")
  temp <- read_delim(filename, delim = "\t")
  temp$Sample <- sample
  cutoff <- rbind(cutoff, temp)
}
H3K27me3 <- left_join(H3K27me3, cutoff, by =c("Library ID"="Sample"))

H3K27me3 <- H3K27me3 %>%
  dplyr::filter(qscore > 0.6)

H3K27me3 %>%  
  ggplot(., aes(x=H3K27me3$qscore, y=H3K27me3$npeaks, color = 'Library ID'))+
  geom_line(size=1)+
  scale_x_continuous(breaks = seq(0, max(H3K27me3$qscore), by = 1))+
  facet_wrap(~`Library ID`, scales = "free", ncol = 5, switch = "y")+
  labs(title = "",
       x = "Q Score",
       y = "Total Peak Lengths",
       color= "Sample")+
  theme_minimal()

Version Author Date
1281eed infurnoheat 2025-07-25
H3K27me3 %>%  
  ggplot(., aes(x=H3K27me3$qscore, y=H3K27me3$lpeaks, color = 'Library ID'))+
  geom_line(size=1)+
  scale_x_continuous(breaks = seq(0, max(H3K27me3$qscore), by = 1))+
  facet_wrap(~`Library ID`, scales = "free", ncol = 5, switch = "y")+
  labs(title = "",
       x = "Q Score",
       y = "Total Peak Lengths",
       color= "Sample")+
  theme_minimal()

Version Author Date
1281eed infurnoheat 2025-07-25
H3K27me3 %>%  
  ggplot(., aes(x=H3K27me3$qscore, y=H3K27me3$avelpeak, color = 'Library ID'))+
  geom_line(size=1)+
  scale_x_continuous(breaks = seq(0, max(H3K27me3$qscore), by = 1))+
  facet_wrap(~`Library ID`, scales = "free", ncol = 5, switch = "y")+
  labs(title = "",
       x = "Q Score",
       y = "Total Peak Lengths",
       color= "Sample")+
  theme_minimal()

Version Author Date
1281eed infurnoheat 2025-07-25
H3K36me3 <- sampleinfo %>%
  dplyr::filter(Histone_Mark=="H3K36me3") %>%
  dplyr::filter(!Treatment=="5FU")
cutoff <- data.frame(matrix(nrow = 0, ncol = 6))
colnames(cutoff) = c("Sample", "pscore", "qscore", "npeaks", "lpeaks", "avelpeak")
for (sample in H3K36me3$`Library ID`) {
  filename <- paste("data/peaks/H3K36me3/", sample, "_narrow_cutoff_analysis.txt", sep = "")
  temp <- read_delim(filename, delim = "\t")
  temp$Sample <- sample
  cutoff <- rbind(cutoff, temp)
}
H3K36me3 <- left_join(H3K36me3, cutoff, by =c("Library ID"="Sample"))

H3K36me3 <- H3K36me3 %>%
  dplyr::filter(qscore > 0.6)

H3K36me3 %>%  
  ggplot(., aes(x=H3K36me3$qscore, y=H3K36me3$npeaks, color = 'Library ID'))+
  geom_line(size=1)+
  scale_x_continuous(breaks = seq(0, max(H3K36me3$qscore), by = 1))+
  facet_wrap(~`Library ID`, scales = "free", ncol = 5, switch = "y")+
  labs(title = "",
       x = "Q Score",
       y = "Total Peak Lengths",
       color= "Sample")+
  theme_minimal()

Version Author Date
1281eed infurnoheat 2025-07-25
H3K36me3 %>%  
  ggplot(., aes(x=H3K36me3$qscore, y=H3K36me3$lpeaks, color = 'Library ID'))+
  geom_line(size=1)+
  scale_x_continuous(breaks = seq(0, max(H3K36me3$qscore), by = 1))+
  facet_wrap(~`Library ID`, scales = "free", ncol = 5, switch = "y")+
  labs(title = "",
       x = "Q Score",
       y = "Total Peak Lengths",
       color= "Sample")+
  theme_minimal()

Version Author Date
1281eed infurnoheat 2025-07-25
H3K36me3 %>%  
  ggplot(., aes(x=H3K36me3$qscore, y=H3K36me3$avelpeak, color = 'Library ID'))+
  geom_line(size=1)+
  scale_x_continuous(breaks = seq(0, max(H3K36me3$qscore), by = 1))+
  facet_wrap(~`Library ID`, scales = "free", ncol = 5, switch = "y")+
  labs(title = "",
       x = "Q Score",
       y = "Total Peak Lengths",
       color= "Sample")+
  theme_minimal()

Version Author Date
1281eed infurnoheat 2025-07-25
H3K9me3 <- sampleinfo %>%
  dplyr::filter(Histone_Mark=="H3K9me3") %>%
  dplyr::filter(!Treatment=="5FU")
cutoff <- data.frame(matrix(nrow = 0, ncol = 6))
colnames(cutoff) = c("Sample", "pscore", "qscore", "npeaks", "lpeaks", "avelpeak")
for (sample in H3K9me3$`Library ID`) {
  filename <- paste("data/peaks/H3K9me3/", sample, "_narrow_cutoff_analysis.txt", sep = "")
  temp <- read_delim(filename, delim = "\t")
  temp$Sample <- sample
  cutoff <- rbind(cutoff, temp)
}
H3K9me3 <- left_join(H3K9me3, cutoff, by =c("Library ID"="Sample"))

H3K9me3 <- H3K9me3 %>%
  dplyr::filter(qscore > 0.6)

H3K9me3 %>%  
  ggplot(., aes(x=H3K9me3$qscore, y=H3K9me3$lpeaks, color = 'Library ID'))+
  geom_line(size=1)+
  scale_x_continuous(breaks = seq(0, max(H3K9me3$qscore), by = 1))+
  facet_wrap(~`Library ID`, scales = "free", ncol = 5, switch = "y")+
  labs(title = "",
       x = "Q Score",
       y = "Total Peak Lengths",
       color= "Sample")+
  theme_minimal()

Version Author Date
1281eed infurnoheat 2025-07-25
H3K9me3 %>%  
  ggplot(., aes(x=H3K9me3$qscore, y=H3K9me3$lpeaks, color = 'Library ID'))+
  geom_line(size=1)+
  scale_x_continuous(breaks = seq(0, max(H3K9me3$qscore), by = 1))+
  facet_wrap(~`Library ID`, scales = "free", ncol = 5, switch = "y")+
  labs(title = "",
       x = "Q Score",
       y = "Total Peak Lengths",
       color= "Sample")+
  theme_minimal()

Version Author Date
1281eed infurnoheat 2025-07-25
H3K9me3 %>%  
  ggplot(., aes(x=H3K9me3$qscore, y=H3K9me3$avelpeak, color = 'Library ID'))+
  geom_line(size=1)+
  scale_x_continuous(breaks = seq(0, max(H3K9me3$qscore), by = 1))+
  facet_wrap(~`Library ID`, scales = "free", ncol = 5, switch = "y")+
  labs(title = "",
       x = "Q Score",
       y = "Total Peak Lengths",
       color= "Sample")+
  theme_minimal()

Version Author Date
1281eed infurnoheat 2025-07-25

sessionInfo()
R version 4.4.2 (2024-10-31 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows 11 x64 (build 26100)

Matrix products: default


locale:
[1] LC_COLLATE=English_United States.utf8 
[2] LC_CTYPE=English_United States.utf8   
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.utf8    

time zone: America/Chicago
tzcode source: internal

attached base packages:
[1] stats4    grid      stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] Rsubread_2.20.0             gcplyr_1.12.0              
 [3] ggpmisc_0.6.2               ggpp_0.5.9                 
 [5] corrplot_0.95               ggpubr_0.6.1               
 [7] DESeq2_1.46.0               SummarizedExperiment_1.36.0
 [9] Biobase_2.66.0              MatrixGenerics_1.18.1      
[11] matrixStats_1.5.0           chromVAR_1.28.0            
[13] GenomicRanges_1.58.0        GenomeInfoDb_1.42.3        
[15] IRanges_2.40.1              S4Vectors_0.44.0           
[17] BiocGenerics_0.52.0         genomation_1.38.0          
[19] kableExtra_1.4.0            DT_0.33                    
[21] viridis_0.6.5               viridisLite_0.4.2          
[23] data.table_1.17.8           ComplexHeatmap_2.22.0      
[25] edgeR_4.4.2                 limma_3.62.2               
[27] lubridate_1.9.4             forcats_1.0.0              
[29] stringr_1.5.1               dplyr_1.1.4                
[31] purrr_1.1.0                 readr_2.1.5                
[33] tidyr_1.3.1                 tibble_3.3.0               
[35] ggplot2_3.5.2               tidyverse_2.0.0            
[37] workflowr_1.7.1            

loaded via a namespace (and not attached):
  [1] splines_4.4.2               later_1.4.2                
  [3] BiocIO_1.16.0               bitops_1.0-9               
  [5] R.oo_1.27.1                 XML_3.99-0.18              
  [7] DirichletMultinomial_1.48.0 lifecycle_1.0.4            
  [9] rstatix_0.7.2               pwalign_1.2.0              
 [11] doParallel_1.0.17           rprojroot_2.1.0            
 [13] vroom_1.6.5                 MASS_7.3-65                
 [15] processx_3.8.6              lattice_0.22-7             
 [17] backports_1.5.0             magrittr_2.0.3             
 [19] plotly_4.11.0               sass_0.4.10                
 [21] rmarkdown_2.29              jquerylib_0.1.4            
 [23] yaml_2.3.10                 plotrix_3.8-4              
 [25] httpuv_1.6.16               DBI_1.2.3                  
 [27] CNEr_1.42.0                 RColorBrewer_1.1-3         
 [29] abind_1.4-8                 zlibbioc_1.52.0            
 [31] R.utils_2.13.0              RCurl_1.98-1.17            
 [33] git2r_0.36.2                circlize_0.4.16            
 [35] GenomeInfoDbData_1.2.13     seqLogo_1.72.0             
 [37] MatrixModels_0.5-4          annotate_1.84.0            
 [39] svglite_2.2.1               codetools_0.2-20           
 [41] DelayedArray_0.32.0         xml2_1.3.8                 
 [43] tidyselect_1.2.1            shape_1.4.6.1              
 [45] UCSC.utils_1.2.0            farver_2.1.2               
 [47] GenomicAlignments_1.42.0    jsonlite_2.0.0             
 [49] GetoptLong_1.0.5            Formula_1.2-5              
 [51] survival_3.8-3              iterators_1.0.14           
 [53] systemfonts_1.2.3           foreach_1.5.2              
 [55] tools_4.4.2                 TFMPvalue_0.0.9            
 [57] Rcpp_1.1.0                  glue_1.8.0                 
 [59] gridExtra_2.3               SparseArray_1.6.2          
 [61] xfun_0.52                   withr_3.0.2                
 [63] fastmap_1.2.0               SparseM_1.84-2             
 [65] callr_3.7.6                 caTools_1.18.3             
 [67] digest_0.6.37               timechange_0.3.0           
 [69] R6_2.6.1                    mime_0.13                  
 [71] seqPattern_1.38.0           textshaping_1.0.1          
 [73] colorspace_2.1-1            GO.db_3.20.0               
 [75] gtools_3.9.5                poweRlaw_1.0.0             
 [77] dichromat_2.0-0.1           RSQLite_2.4.2              
 [79] R.methodsS3_1.8.2           generics_0.1.4             
 [81] rtracklayer_1.66.0          httr_1.4.7                 
 [83] htmlwidgets_1.6.4           S4Arrays_1.6.0             
 [85] TFBSTools_1.44.0            whisker_0.4.1              
 [87] pkgconfig_2.0.3             gtable_0.3.6               
 [89] blob_1.2.4                  impute_1.80.0              
 [91] XVector_0.46.0              htmltools_0.5.8.1          
 [93] carData_3.0-5               clue_0.3-66                
 [95] scales_1.4.0                png_0.1-8                  
 [97] knitr_1.50                  rstudioapi_0.17.1          
 [99] tzdb_0.5.0                  reshape2_1.4.4             
[101] rjson_0.2.23                curl_6.4.0                 
[103] cachem_1.1.0                GlobalOptions_0.1.2        
[105] KernSmooth_2.23-26          parallel_4.4.2             
[107] miniUI_0.1.2                AnnotationDbi_1.68.0       
[109] restfulr_0.0.16             pillar_1.11.0              
[111] vctrs_0.6.5                 promises_1.3.3             
[113] car_3.1-3                   xtable_1.8-4               
[115] cluster_2.1.8.1             evaluate_1.0.4             
[117] cli_3.6.5                   locfit_1.5-9.12            
[119] compiler_4.4.2              Rsamtools_2.22.0           
[121] rlang_1.1.6                 crayon_1.5.3               
[123] ggsignif_0.6.4              labeling_0.4.3             
[125] ps_1.9.1                    getPass_0.2-4              
[127] plyr_1.8.9                  fs_1.6.6                   
[129] stringi_1.8.7               gridBase_0.4-7             
[131] BiocParallel_1.40.2         Biostrings_2.74.1          
[133] lazyeval_0.2.2              quantreg_6.1               
[135] Matrix_1.7-3                BSgenome_1.74.0            
[137] hms_1.1.3                   bit64_4.6.0-1              
[139] KEGGREST_1.46.0             statmod_1.5.0              
[141] shiny_1.11.1                broom_1.0.9                
[143] memoise_2.0.1               bslib_0.9.0                
[145] bit_4.6.0                   polynom_1.4-1